Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
DX1(exp2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(ln1(ALPHA)) -> DX1(ALPHA)
DX1(exp2(ALPHA, BETA)) -> DX1(BETA)
DX1(minus2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(neg1(ALPHA)) -> DX1(ALPHA)
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(minus2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(BETA)
DX1(plus2(ALPHA, BETA)) -> DX1(ALPHA)
The TRS R consists of the following rules:
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
DX1(exp2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(ln1(ALPHA)) -> DX1(ALPHA)
DX1(exp2(ALPHA, BETA)) -> DX1(BETA)
DX1(minus2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(neg1(ALPHA)) -> DX1(ALPHA)
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(minus2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(BETA)
DX1(plus2(ALPHA, BETA)) -> DX1(ALPHA)
The TRS R consists of the following rules:
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
DX1(exp2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(exp2(ALPHA, BETA)) -> DX1(BETA)
DX1(minus2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(minus2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(BETA)
DX1(plus2(ALPHA, BETA)) -> DX1(ALPHA)
Used argument filtering: DX1(x1) = x1
exp2(x1, x2) = exp2(x1, x2)
ln1(x1) = x1
minus2(x1, x2) = minus2(x1, x2)
neg1(x1) = x1
times2(x1, x2) = times2(x1, x2)
div2(x1, x2) = div2(x1, x2)
plus2(x1, x2) = plus2(x1, x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
DX1(ln1(ALPHA)) -> DX1(ALPHA)
DX1(neg1(ALPHA)) -> DX1(ALPHA)
The TRS R consists of the following rules:
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
DX1(neg1(ALPHA)) -> DX1(ALPHA)
Used argument filtering: DX1(x1) = x1
ln1(x1) = x1
neg1(x1) = neg1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
DX1(ln1(ALPHA)) -> DX1(ALPHA)
The TRS R consists of the following rules:
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
DX1(ln1(ALPHA)) -> DX1(ALPHA)
Used argument filtering: DX1(x1) = x1
ln1(x1) = ln1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.